Amines and nitro compounds

Vladimíra Kvasnicová

Amines

= organic derivatives of ammonia in which one or more of the hydrogen atoms is replaced by an alkyl or by aromatic group (R)

N(R)₄⁺

- ammonia NH₃
- primary amine $R_1 NH_2$
- secondary amine $R_1 NH R_2$
- tertiary amine $R_1 N(R_2) R_3$
- quarternary ammonium <u>cation</u> (choline, acetylcholine)

Properties of amines

- C_1 - C_5 amines are soluble in water (H-bonds)
- low MW: gases, sharp penetrating odour similar to ammonia
- amines with increasing MW: liquids and solids, they smell like decaying fish
- diamines are responsible for the <u>odour of</u> <u>decaying animal tissue</u>:
 - \rightarrow H₂N-(CH₂)₄-NH₂ = putrescine
 - > H₂N-(CH₂)₅-NH₂ = cadaverine

Amines

 classification of amines ≠ classification of alcohols!

> t-butylamine = primary amine t-butylalcohol = tertiary alcohol

- N-containing heterocyclic compounds, e.g.
 - > piperidine = secondary alicyclic amine

> indole = secondary aromatic amine

- <u>suffix</u>: -amine (alkyl amine or hydrocarbon amine)
- <u>prefix</u>: <u>amino-</u> or <u>alkylamino hydrocarbon</u>
 3-(N-methylamino)pentane

- CH_3 - CH_2 - $CH(NH_2)$ -COOH
- CH_3 - CH_2 - CH_2 - $CH(CH_3)$ - $N(CH_3)_2$
- $H_2N-(CH_2)_3-NH_2$
- CH_3 - $CH(NH_2)$ - CH_2 -OH
- CH_3 - $CH(NH_2)$ - CH_2 - CH_3
- $CH_3 CH_2 N(CH_3) C_6H_5$
- CH_3 - $CH(NH_2)$ - CH_3
- CH_3 - CH_2 - NH_2

Exercise

- C_6H_5 - NH_2 = aniline !
- C_6H_5 -NH-CH₃
- $C_6H_5-N(CH_3)_2$
- (CH₃)₂NH
- CH_3 - CH_2 - CH_2 - $N(CH_3)$ - CH_2 - CH_3
- $C_6H_{11}-NH_2$
- $H_2N-C_6H_4$ -COOH
- $C_6H_5-CH_2-NH_2$

Reactions of amines

 many chem. properties reflect the reactivity of the unshared pair of electrons on "N" (= base)

 $\begin{array}{l} \succ \ CH_3NH_2 + H_2O \rightarrow CH_3NH_3^+ + OH^- \\ methylamm\underline{onium} \ ion \end{array} \end{array}$

- amines are completely protonated in the reaction with a strong acid \rightarrow ammonium salts (more soluble in water)
 - $\succ CH_3NH_2 + HCI \rightarrow CH_3NH_3^+ + CI^-$
 - In the form of salts to improve their solubility in body fluids
- some detergents contain quarternary ammonium salts, they are used as germicides (for med. istruments)

Reactions of amines

- alkyl substituted amines are stronger bases than ammonia:
 - > $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$ > $CH_3 - NH_2$ > $(CH_3)_2 - NH$ K_b = 1,8×10⁻⁵ K_b = 4,6×10⁻⁴ K_b = 4,7×10⁻⁴
- aromatic amines are weaker bases:
 - $\succ C_6 H_{11} N H_2$ $K_b = 4.6 \times 10^{-4}$
 - \succ C₆H₅-NH₂

 $K_{\rm b} = 4,0 \times 10^{-10}$ $K_{\rm b} = 4,3 \times 10^{-10}$

$$K_{b} = \frac{\left[B^{+}\right]\left[OH^{-}\right]}{\left[BOH\right]}$$

Reaction of amines with HNO₂

- it is used in cassifying unknown amines:
 - Primary amines → diazonium salts (unstable) R-NH₂ + HNO₂ → R-N=N⁺ → N₂ + alcohol
 - Secondary amines → N-nitrosamines (yellow oily comp.) $R_1-NH-R_2 + HNO_2 → R_1R_2N-N=O + water$
 - > tertiary amines + $HNO_2 \rightarrow no$ reaction
- aromatic primary amines react with HNO₂ in a reaction called DIAZOTATION
 ⇒ diazonium salts stabilized by the aromatic ring
- $C_{6}H_{5}-NH_{2} + NaNO_{2} + 2HCI \rightarrow C_{6}H_{5}-N=N^{+}CI^{-} + NaCI + 2H_{2}O$ benzenediazonium chloride

Reactions of amines

diazonium salts are used for preparation of • AZO DYES

by the reaction with a phenol or an aromatic amine (= coupling reaction)

- example of azo dyes: *methylorange* •
- azo compounds: -N=N-•
- examples:
 - \succ C₆H₅-N=N-C₆H₅
 - \succ $C_6H_5-N=N-C_6H_4-CH_3$ toluene-4-azobenzene

azobenzene

Exercise

- CH_3 - CH_2 - CH_2 - NH_2
- C_6H_5 -NH- C_6H_5
- $N(CH_3)_3$
- $CH_3(CH_2)_2 N(CH_3) CH_2CH_3 + ethyl methyl$
- $C_6H_5-N(CH_3)_2$
- $H_2N-C_6H_4$ -COOH
- CH_3 -NH- CH_2 - CH_2 - CH_3
- $H_2N-CH_2-CH_2-OH$

- propylamine
- diphenylamine
- trimethylamine
- propylamine
- dimethyl phenyl amine (N, N-dimethylaniline)
- 4-aminobenzoic acid
- methyl propyl amine
- 2-aminoethanol

Nitro compounds

- <u>functional group</u>: -NO₂ (= nitro group)
- only prefix: nitro- (there is no suffix used)
- <u>preparation</u>: by nitration (nitration mix = $HNO_3 + H_2SO_4$)
- <u>examples</u>:
 - > $CH_3 NO_2$ > $O_2N - CH_2 - CH_2 - NO_2$ > $CH_3 - CH(NO_2) - CH_3$ > $O_2N - C(CH_3)_3$ > $C_6H_5 - NO_2$ > $H_3C - C_6H_4 - NO_2$

nitromethane 1,2-dinitroethane 2-nitropropane 2-nitro-2-methylpropane nitrobenzene (yellow liquid) p-nitrotoluene

TNT

= 2,4,6-trinitrotoluene

http://en.wikipedia.org/wiki/Trinitrotoluene

Properties of nitro compounds

- low MW: liquids of a sweet odour
- some nitroarenes are solid crystalline substances
- high b.p., water insoluble, <u>often highly explosive</u>
- the most important reaction: reduction

 $C_{6}H_{5}-NO_{2}$ $C_{6}H_{5}-N=O$ $C_{6}H_{5}-NH-OH$ $C_{6}H_{5}-N=N-C_{6}H_{5}$ $C_{6}H_{5}-NH-NH-C_{6}H_{5}$ $C_{6}H_{5}-NH_{2}$ nitrobenzene nitrozobenzene N-phenylhydroxylamine azobenzene hydrazobenzene aniline